EXPLORE AERODYNAMICS
YOUR MISSION:
Help students understand why aerodynamics are important. Encourage them to imagine themselves with a job in this field, designing cars, buildings, airplanes and more.

SAFETY CHECK: There’s a lot to handle on these exhibits, but make sure students do it safely (no running, no poking each other in the eye, etc.)

ENCOURAGE EXPLORATION: Ask questions and make sure everyone gets a chance to participate. A little positive feedback goes a long way.

GEEK OUT! You don’t have to be an expert. Your curiosity and enthusiasm inspire kids to learn.

AIR IS REALLY PUSHY! Aerodynamics is the science of how objects interact with air. “Aero” means fluid, like air or water. “Dynamic” refers to the relationship between air or water and an object.

DESIGNERS USE AERODYNAMICS TO MAKE SURE THAT AIRPLANES STAY UP, that race cars go fast, and that bridges aren’t blown down by the wind. Why are airplanes and canoes pointed at the front? Why do bicyclists shave their legs? Why are skyscrapers skinny? It’s all about aerodynamics.
EXPLORING AERODYNAMICS

Right now, there are about 5,000 planes in the sky over America. Across the world, more than 8 million people fly every day.

Most airplanes fly at about 550 miles per hour. The retired Concorde plane used to fly at 1,350 mph. Now engineers are working on a plane that can fly from Florida to Alaska in an hour.

The only living creatures capable of powered flight are insects, birds and bats. The rest of us need airplanes (or big helium balloons, hang-gliders, parachutes, giant kites, or... what else can you imagine?)

GRAND CHALLENGES

If you could do one thing to make life on Earth better, what would that thing be? Here’s a GRAND CHALLENGE: according to some of the world’s smartest people, this is a challenge that humans will face in the next 100 years. What would you do to help solve it?

ENHANCE VIRTUAL REALITY

Virtual reality can be used to train pilots and other professionals who need to practice flying (or performing open-heart surgery, or deactivating bombs, or just about anything else). Virtual reality also lets all of us explore experiences that we’d otherwise only be able to imagine, like swimming at the bottom of the ocean or flying through the solar system. You could make it possible for anyone to see what it’s like to fly!

JOKES

What do you call a fly without wings?

A walk.

What do you get when you cross a bridge with a bicycle?

To the other side.

Why don’t ducks tell jokes while they fly?

Because they would quack up.
BRIDGE VS. WIND

SAFETY FIRST: HOW TO USE
▪ Watch the video.

CONCEPT BREAKDOWN
▪ What’s stronger, steel or wind?
▪ Even though this bridge was built from strong materials, wind pushed it down. How did that happen?

▪ First, the wind pushed against the non-aerodynamic surfaces of the bridge.
▪ This made the bridge sway back and forth.
▪ Each time the bridge moved, the steel got weaker.

▪ Now, bridges and skyscrapers are designed to allow air to flow smoothly around and sometimes through them.

RELATE TO REAL LIFE!
Have you ever bent a paperclip until it broke? How many times did you have to bend it before it broke? Each time you moved it, you weakened the metal.

© Texas Alliance for Minorities in Engineering, 2016.08 - www.TAME.org
Did you ever wonder how a bridge gets built?

- Some bridge pieces can be constructed on land and then placed into the water.
- For some projects, construction crews have to build water-tight chambers, called cofferdams, to keep the water out while they build. Early bridge-builders, like the ancient Romans, probably used cofferdams.

Who designs bridges? **CIVIL ENGINEERS** design the structures that help us live better: roads, bridges, sewer systems, flood protection, and much more.

AVERAGE SALARY: $98,000

ADDITIONAL INFORMATION

The **TACOMA NARROWS BRIDGE**, shown in this video, only stood for 4 months and 6 days. In 1940, forty mile per hour winds brought it down.
BERNOULLI PRINCIPLE

SAFETY FIRST: HOW TO USE

- Okay for students to handle.
- Hold the handles and tilt the air flow gently back and forth.
- What happens to the beach ball when you tilt the air flow?

CONCEPT BREAKDOWN

- This exhibit shows how air pressure, air movement, and gravity work together to keep the ball in the air.
- Ask the students: what is air pressure? Air pressure is caused by the weight of our earth’s atmosphere pushing air down. Bernoulli’s Principle says that air pressure gets weaker inside a stream of flowing air. The faster the air stream, the weaker the air pressure.
- When air hits a curved object (like the beach ball or an airplane wing), that air speeds up to get around the object. That means the air pressure gets weaker (but it’s still strong enough to lift the object!).
- The air pressure in the rest of the room moves slowly, so it’s stronger. The room’s stronger air pressure pushes all around the object so that it can’t fall out of the weak stream, even when you tilt the air flow.
- Eventually, gravity wins. If you tilt the nozzle far enough, the ball will fall.

RELATE TO REAL LIFE!

Imagine you have a full balloon, and you let go of the opening. What happens? It deflates. That’s because air pressure from outside of the balloon squeezes against the sides of the balloon, forcing the air out. Human lungs also use air pressure to help you breathe!

We know that airplane wings use the Bernoulli Principle for lift. What other flying objects use their shape for lift?

- A boomerang.
- A kite.
- A bird.
QUESTIONS

Do you think the ball is being pushed by the air or pulled by the air?

- It looks like it’s being pushed, right? But what happens when you tilt the nozzle – if the ball were being pushed, wouldn’t it go in that direction?
- The movement of air around the ball actually creates a *pull*, or *lift*.

COMMERCIAL PILOTS fly passenger airplanes. Military pilots fly fighter jets. Other pilots drop water onto wildfires, rescue stranded sailors, or take people on sightseeing tours.

AVERAGE SALARY: $140,000

ADDITIONAL INFORMATION

Why can’t humans fly like birds? We don’t have wings, but it’s not just that. Our chest muscles just aren’t strong enough to lift our bodies by flapping wings. Fortunately, inventors like the Wright Brothers looked at the structure of birds to design machines that let us fly.
SAFETY FIRST: HOW TO USE

- Okay for students to handle.
- Try putting different shapes into the wind tunnel.
- Watch how they catch the air. Which shapes move fastest? Which move slowest?

CONCEPT BREAKDOWN

- “Aerodynamic” describes a shape that reduces the drag or pull from air moving past it.
- An aerodynamic shape, like an airplane wing or a canoe, cuts through the air.
- Non-aerodynamic shapes, like parachutes and sails, are used to catch the air.
- Air is a very strong force. Engineers study the interaction between air and objects to design faster airplanes, taller skyscrapers, and safer bridges.

RELATE TO REAL LIFE!

Have you ever put your hand out a car window when the car is moving?

What happens when you hold your palm facing the wind?

What happens when you tilt your hand so that the skinny side faces the wind? You’ve been experimenting with aerodynamics!
If you design cars for a living, you’ll use aerodynamics to make your designs faster, safer and more fuel efficient. For example:

AUTOMOTIVE ENGINEERS design motorcycles, cars, buses, and trucks. They figure out how we’ll get around on the surface of Mars, how to teach a car to drive itself, and how to power a car without gasoline.

AVERAGE SALARY: $105,000

ADDITIONAL INFORMATION

WIND TUNNELS like this one are used in aerodynamic research to test how different shapes interact with wind.

THEY’RE ALSO USED FOR FUN! Recreational wind tunnels let you see how aerodynamic YOU are. What do you think would happen if you were in a giant wind tunnel and held your arms and legs out?
SAFETY FIRST: HOW TO USE

- Turn on the air flow so that it’s directed against the curve of the airfoil. Place your hand to the left of the paper and notice the difference between the air flow above and below the paper.
- What happens to the paper as you move the stream of air up and down?

CONCEPT BREAKDOWN

- What keeps an airplane from falling out of the sky? Lift.
- Lift is the push of high-pressure air on the underside of a wing.
- Airplane wings are designed so that the curve on the top side is larger than the curve on the bottom.
- Air traveling over the wing has to travel faster to keep up with the air underneath.
- Faster air has weaker pressure. Slower air has higher pressure.
- The high-pressure air underneath the wing keeps the plane up.

RELATE TO REAL LIFE!

- Why does the air speed up when it hits the airplane wing? When air hits an object, its path of travel gets smaller.
- Imagine a river. When the river gets “squeezed” between narrow banks, what happens? The water starts moving faster.
- The curve at the top of the wing shape creates more of a squeeze than the curve at the bottom.
AIRFOIL & PAPER AIRPLANE

QUESTIONS

- With a few sheets of paper, you can do your own aerodynamic research! Try making a paper airplane out of regular copy paper, newspaper, or cereal boxes.
- What is the best shape for a paper airplane? What goes faster, a wide airplane or a skinny airplane?
- What happens when you change the curve of the wings?
- Try adding weight with paper clips. What happens when the weight is added at the front? At the back? In the middle?

CAREERS

Where do AIRPLANE DESIGNERS work?

- A lot of them work in Texas! Boeing and Lockheed Martin are two big aircraft manufacturers with plants in Texas.

- AEROSPACE ENGINEERS imagine bigger, faster, and safer designs for everything from cars and trains to fighter jets and satellites.

AVERAGE SALARY: $115,000

ADDITIONAL INFORMATION

HUMANS HAVE BEEN TRYING TO FLY FOR A LONG, LONG TIME. Helicopters weren’t invented until 1939, but a famous painter, mathematician, and inventor named LEONARDO DA VINCI designed a machine that used a cork-screw shaped wing to fly like a helicopter. He never built it, but he still had the idea nearly 450 years before engineers made helicopters a reality! What ideas do you have for the future of flight?
Thank you for inspiring students and encouraging them to explore careers in STEM. We could not do this work without you, and we truly appreciate your support.

If you took photos today or plan to post to social media about your experience, please consider tagging the TAME State Office. We would like to recognize your hard work and may share images and stories on TAME.org or with our corporate partners who help bring this experience to different communities around Texas.

Facebook.com/TAMESTEM

Twitter.com/TAMESTEM

#DrivingSTEM
Schedule your own Trailblazer experience:

TAME.ORG/TRAILBLAZER